The nature of bonding and electronic properties of graphene and benzene with iridium adatoms.
نویسندگان
چکیده
Recent theoretical simulations predicted that graphene decorated with Ir adatoms could realize a two-dimensional topological insulator with a substantial band gap. Our understanding of how the electronic properties of graphene change in the presence of metal adatoms is however still limited, as the binding is quite complex involving static and dynamic correlation effects together with relativistic contributions, which makes the theoretical description of such systems quite challenging. We applied the quantum chemical complete active space second order perturbation theory (CASPT2) method and density functional theory beyond the standard local density functional approach including relativistic spin-orbit coupling (SOC) effects on Ir-benzene and Ir-graphene complexes. The CASPT2-SOC method revealed a strong binding affinity of Ir for benzene (33.1 kcal mol(-1)) at a 1.81 Å distance, which was of a single reference character, and a weaker binding affinity (6.3 kcal mol(-1)) at 3.00 Å of a multireference character. In the Ir-graphene complex, the quartet ground-state of the Ir atom changed to the doublet state upon adsorption, and the binding energy predicted by optB86b-vdW-SOC functional remained high (33.8 kcal mol(-1)). In all cases the dynamic correlation effects significantly contributed to the binding. The density of states calculated with the hybrid functional HSE06 showed that the gap of 0.3 eV was induced in graphene by the adsorbed Ir atom even in scalar relativistic calculation, in contrast to metallic behaviour predicted by local density approximation. The results suggest that the strong correlation effects contribute to the opening of the band gap in graphene covered with the Ir adatoms. The value of the magnetic anisotropy energy of 0.1 kcal mol(-1) predicted by HSE06 is lower than those calculated using local functionals.
منابع مشابه
Electronic transport properties of Ir-decorated graphene
Graphene decorated with 5d transitional metal atoms is predicted to exhibit many intriguing properties; for example iridium adatoms are proposed to induce a substantial topological gap in graphene. We extensively investigated the conductivity of single-layer graphene decorated with iridium deposited in ultra-high vacuum at low temperature (7 K) as a function of Ir concentration, carrier density...
متن کاملSupplementary Information: The nature of bonding and electronic properties of graphene with iridium adatoms
The diagonalization algorithm in VASP, Davidson block iteration scheme, produced discontinuous potential energy curve and even diverged at some distances using standard settings in VASP, due to the multi-reference nature of the system (see manusript). We attempted to improve the convergence and we increased the width of the smearing σ , which determines how the partial occupancies are set for e...
متن کاملHydrophobicity Properties of Graphite and Reduced Graphene Oxide of The Polysulfone (PSf) Mixed Matrix Membrane
Hydrophobicity properties of graphite and green synthesized graphene (gsG) from exfoliated graphite/GO towards polymer membrane characteristic and properties at different weight percentage concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. PSf/graphite and PSf/gsG membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed...
متن کاملThe electronic and diffusion properties of metal adatoms on graphene sheets: a first-principles study
We use first-principles calculations to investigate the geometric, electronic and magnetic properties of metal adatoms on two typical graphene substrates (monolayer and bilayer). Firstly, we study the adsorption behaviors and the doping effects of metal atoms on pristine and defective bilayer graphene sheets (PBG and DBG). It is found that the metal doping in DBG sheets is more stable than that...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 38 شماره
صفحات -
تاریخ انتشار 2014